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A model of porous medium has been developed in which one part of cylindrical pores is mutually 
completely separated whereas the other part is interlinked so that an intermixing of pore contents 
may occur. For this model structure, relations were derived for determining the effectiveness 
factor of a catalytic reaction proceeding on the inner surface of pores. Simulation calculations 
for the p-, o-hydrogen conversion with the bidisperse structure of the catalyst reveal the effect 
of the size and number of pores. Effectiveness factors obtained by an experimental study of the 
catalytic p-, o-hydrogen conversion in the region of internal diffusion were correlated by using 
a simplified variant of this model and satisfactory agreement between the calculations and ex-
periment was found. 

For modelling of the diffusion of gases through porous catalysts and adsorbents, models based 
on the idea that the porous structure may be replaced by a bundle of straight parallel cylindrical 
capillaries with circular cross-section have recently proved useful. Different versions of this 
basic idea consider either that all pores (capillaries) have identical radii (Rothfeld model1) or that 
there are several groups of pores with different radii (Feng, Kostrov and Stewart2). A more 
general case is represented by the model due to Johnson and Stewart3 or Satterfield and Cadle4 

in which all pores whose radii are between r m i n and r m a x are considered (rm i n and r m a x are radii 
of narrowest and widest pores in the porous substance). It is further assumed in these models 
that the average angle between the direction of the diffusion flux and capillary axes is smaller 
than 90° so that the diffusion path is longer than the diffused distance measured in the direction 
of diffusion. This elongation of the diffusion path is characterized by the tortuosity factor, q, 
whose value must be determined experimentally. Thus, the tortuosity becomes an adjustable para-
meter, which includes inherently also other factors not considered in the model. Such are e.g. 
crookedness of pores, variability of their radii along the pore axis, roughness of the inner surface, 
etc. 

The success of the outlined models of porous medium for diffusion of gases raises 
the hopes that the idea of the bundle of parallel cylindrical pores could prove useful 
even for the description of the effect of diffusion in a porous catalyst structure on 
the course of a heterogeneous catalytic reaction proceeding on inner walls of the 
capillaries. Any solution of this problem, however, must take into account the fol-
lowing requirement imposed on models of porous medium in catalytic reactions: 
at equal distances from the outer surface of a catalyst particle (which is surrounded 
by the reaction mixture of constant composition), an identical composition of the 

Col lec t ion C z e c h o s l o v . Chem. C o m m u n . [Vol. 41] [1976] 
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reaction mixture can be expected regardless of the fact which pore radius is actually 
considered. Were all the pores along their axes perfectly separated, concentration 
profiles of reaction components along pore axes would be different in pores with 
different radii and the assumption of equal composition at equal distances from the 
outer surface would be violated. However, this condition would be satisfied if all 
the pores had identical radii or if pores of different radii were mutually interlinked 
in such a manner that would enable intermixing of their contents at all distances from 
the outer surface of the catalyst particle. 

Limiting alternatives (existence of either completely separated or perfectly inter-
linked pores) may be used for construction of a more general model: the porous 
structure will be created by straight cylindrical capillaries with circular cross-
-sections of different radii r. The number of pores whose radii are between r and r + dr 
is determined in accordance with the requirement that the distribution curves of pores 
in the model medium and in the substituted real porous medium be identical. Pores 
from the group with radii r — (r + dr) and the normal to the outer surface of the 
porous particle form on the average a certain angle, which causes the tortuosity 
of these pores to be equal to q(q = q(r)). Of pores from this group, a certain fraction 
A (A = ^d(r)) is mutually perfectly separated; the fraction of perfectly interlinked 
pores in this group is then [1 — ^(r)]. This model is schematically depicted on Fig. 1. 

Our model of porous medium is thus characterized by three functions: frequency 
function of the distribution of pore volumes with respect to their radii,/(r), tortuosity 
function, q(r), and distributivity function, A(r). This general method of description 
allows us to make an easy transition to several more simple (and probably more real) 
cases: thus, for example, the porous medium can contain only pores of one or several 
certain radii or the tortuosity can have a constant value for pores of all different radii 
(q = const.) or pores from a certain range of radii can display a constant tortuosity 
which differs from that displayed by pores from another range of radii. In the same 
manner, the distributivity A may be considered either as entirely independent of the 
radius (A = const.) or as constant in certain intervals of pore radii. 

z*Lq x « 1 Xj . / j s 
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FIG. 1 
Scheme of the Semi-Linked Pore Model 
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The frequency function of the pore volume distribution will be introduced so that 
the product f ( r ) d r may represent the fraction of the volume of pores with radii 
r — (r + dr) f r o m the total pore volume. Then it must hold 

rr max 
f ( r ) d r = 1 ( / ) 

J f min 

(from now on the lower and upper limits of the pore radii will be simplified to 
rmjn = 0, rmax = oo). The terms A(r)f(r) d r and [1 — z l ( r ) ] / ( r ) d r then obviously 
represent volume fractions of mutually separated and perfectly interlinked pores 
with radii r — (r + dr) f rom the total pore volume, resp. 

By using f u n c t i o n s / ( r ) , q(r) and A(r) we can determine the numbers of isolated, 
dn i s o l(r) , and interlinked, d«H n k ( r ) , pores with radii r — (r + dr) which open into 
a unit of the outer surface of the porous particle. If the total pore volume related 
to volume unit of the porous particle is equal to s (porosity), the following relations 
might be easily obtained 

(r) = eA(r)f(r) dr/nr2 q(r) , (2) 

dn l i n k ( r ) = e [ l - A(r)]/(r) dr/nr2 q(r) (3) 

taking into account that the volume of isolated or interlinked pores (with radii 
r — (r + dr)) related to volume unit of the porous substance is sA(r) f ( r ) d r or 
e[ l — z l ( r ) ] / ( r ) dr , resp., and the volume of one pore is %r2q(r). 

In the following we will consider a porous catalyst in the form of an infinite slab 
with half-width L, with the dimensionless length coordinate x perpendicular to 
the outer surface (x = 0 in the centre of the particle, jc = 1 at the outer surface) 
and with unit cross-section parallel with the outer surface. The length coordinate 
is measured in the direction of the axis of cylindrical pores (z — 0 in the centre, 
z = Lq at the outer surface of the particle). An isothermal catalytic reaction among 
p reaction components proceeds on pore walls in an m-component reaction mixture 
(p fg m) 

p 
X M i ^ O , (; = 1, . . . , p ; p ^ m ) , (4) 
i = 1 

where a{ is the stoichiometric coefficient of reaction component A^i = 1 ,...p) 
(flj < 0 for reactants and a{ > 0 for reaction products). The total molar concentra-
tion of the gaseous mixture is cx(mol/cm3) , the mole fraction of component A{ is y{; 
the composition of the reaction mixture at the outer surface of the particle is y i s . 

The rate of reaction of key component At related to surface unit of pores, R, 
is generally equal to R = R(cr, >';) (mol/cm2s). It may be shown easily that the rate 
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of reaction related to volume unit of the porous particle (mol/cm3s) is equal to 
2e<l/r) R, where the integral mean value <1 jr) is defined by 

<l/r> = [ / ( r ) / r ] d r . (5) 

In the case of diffusion of a multicomponent gaseous mixture through a pore 
in the transition region, the molar flux density of the key component towards 
the interior of the particle, J f , (related to unit cross-section of the pore with radius r) 
may be expressed by 

JT = ®(r) cT[dyi(r, z)ldz] , (6) 

where <2>(r) is the diffusion coefficient of the key component in the multicomponent 
mixture; in the presence or reaction (4) this coefficient is defined by 5 

p m 

j = i j = P + I 

is related to the radius through the Knudsen diffusion coefficient of component A l : 

= (2/3) rWl , (8) 

where wy is the thermal velocity of molecules Ay [wj = 
(8RT/nMJ)1/2]. It follows from Eq. (7) 

that 2( r ) depends also on the composition of the reaction mixture which surrounds the particle, 
j i s . Eq. (6) may be written also for other components of the reaction mixture; this allows us to ex-
press mole fractions of non-key components (i =2, ..., m) as linear functions5 of yl: 

with 
J7! - J îs = ^(.Vl - J>ls) < 

5 = s) (/ = 2 p ) 
1 l(^iMs) (/ = P + l,...,m) 

(9) 

(10) 

The diffusion coefficients are defined by 

[ ( « i / ^ k i ) + Z (fli^js - + a\ Z ' (i = 2,..., p) 
j = i j=p+i 

®7.X = K (11) 
p 

yi sZ«jMj (i = p + 1,..., m) 
j = i 

Using relation (9), the rate of reaction of the key component, R, can be expressed as a function 
of y-^ only, i.e. R = R(yj). 
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Reaction in an Isolated Pore 

Mass balance of the key component in an elementary part of a pore with radius r 

and length dz may be expressed as 

d2cjdx2 = M2q(c) , (12) 

in which the reduced mole fraction of the key component c(c = c(r, x ) ) and the 
dimensionless length coordinate x are defined by 

c = y j y u > * = ZIL<1 • O3) 

In the case of a reversible reaction it is advantageous to define c by the relation c = 

= ( j i ~ yT) l (y is — where is the mole fraction of the key component in 
the equilibrium mixture which arises from the mixture surrounding the particle at 
isobaric conditions6, because then it holds c e (0-1) similarly as in the irreversible 
case. The dimensionless reaction rate q is related to the rate at the outer surface 
of the particle RS(RS = R(yu)) by 

Q = R(yi)lRs (14) 

and M is the dimensionless Thiele modulus for isolated pores (M = M(r)), which 
can be written as 

M = &lF(r) (15) 

and is the dimensional part of the Thiele modulus: 

<P2 = I?Rsjcryls. (16) 

[In the case of reversible reaction, y l s in the denominator must be replaced by ( y l s — 
— Jeiq)]. As the rate of reaction of the key component at the outer surface of the par-
ticle, Rs, is related to unit catalyst surface, the quantity 0 depends only on the reaction 
kinetics and on the magnitude of the catalyst particle. All texture and difFusional 
characteristics of the porous substance are included in the dimensional function F(r) 

F2(r) = (rl2)®(r)lq2(r). (17) 

The differential balance equation (12) is supplemented by the boundary conditions 

outer surface of the particle: x = 1 c = 1 , 

symmetry condition (particle centre): x = 0 dcjdx = 0 . (/8) 
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The solution of balance (12) with boundary conditions (18) yields the profile of the 
dimensionless concentration along the pore length c = c(r, jc). It is remarkable 
that the pore radius affects the solution only through the Thiele modulus M, in which 
the function F contains r explicitly but also implicitly as q(r) and @(r). 

For determining the amount of the key component which has reacted in a pore 
with radius r, it is sufficient to know the concentration gradient at the outer surface 
of the particle (x = l), i.e. c'(r, l) (the dash denotes the derivative with respect to x); 
with the help of this quantity, the molar flux of the key component through the open-
ing of one pore towards the interior of the particle may be expressed as iir2@(r) 
cT_ylsc'(r, 1 )jLq(r). There are dn i so l(r) pore openings with radii r — (r + dr) on unit 
surface of the outer particle surface, through which the key component flows into the 
particle (and reacts there subsequently due to the existing steady state) in the amount 
of 

(ecTyls c'(r, 1) 2>(r) A(r)f(r)lLq2(r)] dr . * (19) 

The amount of the key component which enters isolated pores of all possible radii 
is then obviously equal to 

fayjL) P[c'(r, 1) ®(r) A(r)f(r) /q2(r)] dr . (20) 

Reaction in Interlinked Pores 

The assumption of perfect interlinking of pores means that the concentration profiles 
in all pores from this group are identical and equal to c(x) although the radii may be 
different. In constructing the mass balance equation for the key component, which 
on solving yields the concentration profile c(x), the following method may be adopted: 
the molar flux of the key component in a pore with radius r, located in the porous 
substance at coordinate z, is equal to nr2 jV(r, z); the number of interlinked pores 
with radii r — (r + dr) which belong to unit cross-section of the porous substance 
perpendicular to the direction of the diffusion x is d« I i nk (Eq. (3)). By expressing 
the density of the diffusion flux J f ( r , z) from Eq. (6) and using the dimensionless 
variables from relation (13), the following expression is obtained for the molar flux 
through all interlinked pores in unit cross-section of the porous substance, NUnk 

fco 

{®{r)l 1 - Z l ( r ) ] / ( r ) / ^ 2 ( r ) } d r , (21) 

in which the gradient dcjdx could be factored out of the integral as it is assumed 
that the concentration profile c(x) is identical in all interlinked pores. 
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The inner surface of interlinked pores with radii r — (r + dr) and length dz is 
equal to 2nr dz dn I i n k ; because R moles of the key component will react on a unit 
of this surface, the number of mol of the key component which will react in the 
differential segment dz of all interlinked pores which pass through unit cross-section 
of the porous substance will be equal to 

2RLs | | [1 - A(r)] f ( r ) d r / r j dx . (22) 

In steady state, this amount must be equal to the difference NUnk(z + dz) — iV,ink(z), 
i.e. diVnnk (Eq. (21)). The mass balance of the key component in interlinked pores 
can be therefore written as 

d 2 c /dx 2 = M2q(c) , (23) 

where the dimensionless reaction rate q is defined in Eq. (14) and the Thiele modulus 
M is equal to 

M = <P/F . (24) 

The quantity <P is determined by Eq. (16) and the quantity F is given by 

9(r) [1 - A(r)] [.f(r)lq2(r)] d r 
F2 = ^ . (25) foe v ' 

2jo[l -A(r)][f(r)lr-]dr 

The differential balance of interlinked pores (23) is supplemented by analogous 
boundary conditions as in the case of the balance of isolated pores (12), i.e. 

x — 1 c — 1 

x = 0 c' = 0 . (26) 

The concentration profile in interlinked porex c(x), which is obtained by solution 
of Eq. (23), depends only on the value of M ; quantities depending on the pore radius 
r (q, A,f,S>) appear only in F as integral mean values. 

For determination of the amount of the key component which reacts in all inter-
linked pores opening into unit cross-section of the outer particle surface, a knowledge 
of the gradient of the dimensionless concentration at the outer surface c ' ( l ) obtained 
by solution of balance differential equation (23) is sufficient. Similarly as in the case 
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of isolated pores it may be easily proved that this amount is equal to 

r<x> 

(scjyjL) c'(l)\{@(r) [1 - J(r)] /(r) / t f2(r)} dr . (27) 

Effectiveness Factor 

The effectiveness factor is defined as the ratio of the amount of the key component 
which will react in a particle of the given magnitude and the amount which would 
react if the inner surface of the particle were in contact with the reaction mixture 
of the composition equal to that at the outer surface of this particle. From expressions 
(20) and (27) for the amounts of the key component which enter a particle (and will 
react inside it) through isolated and interlinked pores which start in the unit of the 
outer surface, the following general expression form may be obtained I* oo 

n = >7linkWi ink + I ^ i s o l W w i s o l ( r ) d>" • ( 2 8 ) 

The symbol riUnk denotes the constant effectiveness factor of the interlinked pores 

*7.ink = c'(l)/M2 (29) 

and r]isoi(r) is the radius —dependent effectiveness factor of the isolated pores 

hUr) = c'(r> ! ) / m 2 M • (30) 

The terms wlink and wiso] are weights of contributions due to interlinked and isolated 
pores 

wlink = 1 - « / l / r > / < l / r » (31) 

Wisoi (r) = A(r)f(r)l(rOlO) (32) 

in which the integral mean value <zl/(r)) is defined by 
f oo 

<J/r> = I [ J ( r ) / ( r ) / r ] d r . (33) 

If all pores are perfectly interlinked, i.e. for A = 0, relation (28) reduces to the equa-
lity 7/ = 77link, which describes one of the limiting forms of the semi-linked pore 
model — the average pore model. Taking into account interlinking of pores with 
arbitrary radii, the effect of internal diffusion on the rate of catalytic reaction is the 
same as if the porous medium were represented by a bundle of cylindrical capillaries 
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with a constant (average) radius and constant (average) tortuosity. This idea has been 
employed by Rothfeld1 for the diffusion of binary mixtures of gases through a porous 
medium. 

If pores with different radii are not interlinked at all (i.e. A — l), the first term on 
the RHS of Eq. (28) disappears and the resulting relation describes the second limiting 
form of the semi-linked pore model — the isolated pore model. 

From the general expression (28), useful relations for the effectiveness factor in 
more simple texture cases might be obtained easily. Thus, one can for example assume 
that the distributivity and/or tortuosity is constant in the whole range of pore radii or, 
possibly, that they exhibit different (but constant) values in mesopores and macro-
pores. Cases when the porous substance contains pores of certain sizes only can be 
handled in the same manner (e.g. a strictly bidisperse porous substance contains 
pores with radii rt and r2 only; the frequency function f(r) is then given by: / ( r ) dr — 
= fij/e for r = ru f(r) dr = s2je for r = r2, f(r) dr = 0 for r =# ru r2; £i and e2 

are porosities of pores with radii and r2, the total porosity is e = 4- s2). Rela-
tions for several typical simplified situations are summarized in Appendix. Naturally, 
for each of these situations limiting forms for the average pore and isolated pore models 
may be found, too; it is sufficient to set A = 0, or A = 1, resp. 

Tine Region of Strong Internal Diffusion 

If the effect of internal diffusion is such strong that the concentration of the key 
component (reactant) drops to almost zero (in the case of a reversible reaction 
to its equilibrium value), the boundary conditions of the differential mass balances 
(12) and (23) in the centre of the particle (x = 0, dc/dx = 0, and dc/dx = 0) may be 
replaced by 

for balance (23). The boundary condition at the outer surface of the catalyst particle 
remains unchanged (i.e. c = 1 and c = 1 for x = 1). These boundary conditions 
allow one to integrate balances (12) and (23) analytically and to express gradients 
c'(l) and c(l) which are necessary for determination of effectiveness factors (Eqs (29), 
(30)). If an asterisk denotes the region of validity of boundary conditions (34) and 
(35), the following relation results for the effectiveness factor rj* 

x = 0 c = 0 (34) 

in the case of balance (12) and by 

x = 0 c = 0 (35) 
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where 
Vunk = e/M = <PF/<P , 

itsoM = q>lM(r) = <pF(r)l<P , 

(37) 

(38) 

weights wisol and wIink are given by Eqs (31) and (32); the dimensionless function cp 
is defined by 

cp - 2 £?(c) dc 1 / 2 (39) 

and depends only on parameters which appear in the kinetic equation of the reaction, 
Q(C), or possibly on the composition of the reaction mixture at the outer surface of 
the catalyst particle (j/ js; j — 1, . . . , m). For a simple n-th order power-law kinetics, 
(p = 2l(n + l). In the special case of a first-order reaction (n = l) we obtain <p = 1. 
Expressions for some cases of the Langmuir-Hinshelwood kinetics may be found 
in the literature (e.g. for example7). 

By combining Eqs (31), (32), (36) —(39), the expression for y}* may be rearranged 
to read 

r\* = \\Ji (40) 

where the generalized dimensionless modulus M is given by 

-"-my* A(r)f(r)F(r) 
r<l/r> 

d r 

(41) 

Quantities <P, F, F(r) were defined in Eqs (16), (25) and (17). 

If, in graphical representation of computed effectiveness factors, log 0 and log t] are considered 
as independent and dependent variables, respectively, then in the region of strong internal dif-
fusion parallel straight lines with the slope of — 1 are obtained. I f log is employed as the inde-
pendent variable, these straight lines merge into a single line which forms the asymptotic solu-

The Fffect of the Catalyst Texture 

For modelling the effect of the catalyst texture on effectiveness factors, simulation 
computations according to the semi-linked pore model were performed for a simple 
model catalytic reaction — the para-ortho hydrogen conversion at atmospheric 
pressure and 25°C. At constant pressure of hydrogen this reversible reaction is of 
first order with respect to the concentration of p-hydrogen8 (index 1): 

Ri = kcT(yl - },eq). (42) 
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(The diffusion coefficient <2>(r) in this system at 25°C and atmospheric pressure may be 
written as = + where the self-diffusion coefficient of hydrogen 
is Q>yx = 1-647 cm2/s and the Knudsen diffusion coefficient = 118-4 . 104 r for 
r in cm.). Differential mass balances of isolated and interlinked pores (12), (23) with 
boundary conditions (18), (26) may be then integrated analytically to yield 

'7iink = tanh(M)/M = tanh(*)/F)/(<P/F), (43) 

r,isol(r) = tanh[M(r)]/M(r) = tanh[^/F(r)]/[$/JF(r)] . (44) 

For the effect of the number and size of pores present in the catalyst to become clearly 
visible, a strictly bidisperse structure was selected which contained pores of two sizes 
only — and r2 — and identical distributivities A and tortuosities q. (Case 4 in 
Appendix). Pore sizes (r l5 r2) and their volume fractions (sjs and £2/e) were chosen 

Fig. 2. 
The Effect of the Relative Amount of Pores of the Same Size on the Effectiveness Factor 

rx = 3 nm, r2 = 300 nm; a e1lr= 0-01, e2/e = 0-99; be1/e= 0-05, e2/e = 0-95; c eje = 0-1, 
e2/e = 0-9; del/s= 0-5, e2/e = 0-5; (L in cm, k in cm/s). 
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as independent variables. The effectiveness factor is then given by Eq. (A-13) in 
Appendix in which ^ l ink and r]iso](r) are given by Eqs (43), (44). The final results are 
in Figs 2 and 3 in logarithmic coordinates rj versus (<Pq) (for a first-order reaction, 
the structure of <P is simple : 0 = Lk1/2). Fig. 4 shows the advantage of use of the 
generalized modulus Jt as the independent variable. 

It follows from the given results that at otherwise equal conditions, the effectiveness 
factor is always higher in the case of perfect interlinking of pores (A = 0) than in the 
case when a part of pores is isolated (A > 0). Lowest effectiveness factors were 
observed in the case of perfect isolation of all pores (A = 1). This is due to the fact 
that the effectiveness factor is extremely low in narrow pores which, on the other hand, 
contain most of the catalytically active surface; the effectiveness factor increases in 
wider pores, but the contribution of such pores to the total catalyst surface is not as 
a rule too significant. If all pores are perfectly interlinked (A = 0), we have a porous 
structure in which the entire catalytically active surface is concentrated in pores with 
one (mean) radius; as this radius is higher than that of narrowest pores, the effecti-
veness factor is also higher. Simultaneously, the difference between effectiveness fac-

Fig. 3 
The Effect of the Pore Size on the Effectiveness Factor 

£j js = e2 /e = 0-5; a rx — 5 nm, r2 = 100 nm; b r 1 = 50 nm, r2 = 100 nm; c r 1 = 5 nm, 
r2 = 1 000 nm; d rx = 50 nm, r2 — 1000 nm; (L in cm, k in cm/s). 
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tors for A = 0 and A = 1 can be considerable (Figs 3c, 2b —2d). Thus, the degree 
of interlinking of pores A plays an important role. 

If a part of pores is isolated [A > 0), the reaction in wide pores is affected by the 
internal diffusion only little. The transition into the region of strong internal diffusion 
appears therefore in these pores later than in more narrow ones. Consequently, the 
dependence tj — <P approaches its descending linear asymptote (the transition into 
the region of strong internal diffusion) more slowly in structures with isolated pores 
than in those containing perfectly interlinked pores (Figs 2b and 2c). 

Some curves on Figs 2 — 4, especially when almost all pores are isolated, exhibit 
an inflection point. This situation occurs when ^ isou decreases sharply with increasing 
<P in narrow isolated pores, whereas the effectiveness of isolated wide pores, rjisol2, 
decreases rather slowly. Should this inflection point appear in the vicinity of <P « 1, 
the weights of effectiveness factors of narrow and wide isolated pores ^ / [ s r ^ l / ^ ) ] 
and £ 2 / [ £ r20/^)] 5 resp. — see Eq. (A-10)) must have appropriate values (the weights 
represent fractions of surface in narrow and wide pores, resp.). 

If narrow and wide pores are present in the same amount, then the diminishing 
of differences in their sizes brings corresponding rj-<P dependences closer to one 
another and vice versa (see Figs 3a and b and 3c and d). This is only natural as the 
distributivity loses its meaning if both kinds of pores become indistinguishable: the 
porous medium will contain pores of one size only and an unique rj-<P dependence 
will therefore remain. 

If both isolated and interlinked pores exist in a porous substance, we must be 
careful in applying criteria which guarantee the absence of internal diffusion. Such 
criteria stem usually from the assumption that the reaction is not too much affected 
by internal diffusion if the value of the Thiele modulus is less than unity. However, 
in the analyzed bidisperse structure there are three Thiele moduli (M, M t , M2) 
which can exhibit rather diverse values: for conditions on Fig. 3c and Lq ki/2 = 
= 1-4 . 10"3 we obtain e.g. M = 1-15, Ml = 5-9, M2 = 0-08 which means that the 
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reaction is affected by internal diffusion negligibly only in isolated wide pores (M 2 < 
< l ) whereas the internal diffusion cannot be neglected in narrow isolated ( M t > 1) 
and interlinked (M > l ) pores. This is illustrated by the effectiveness factor which 
grows from 0-17 (A = 1) to 0-71 (A = 0). 

p-o-Hydrogen Conversion 

The variant of the semi-linked pore model with a constant distributivity and tortuosity 
(Eqs (A-l), (43), (44)) was applied to experimental data obtained in a study of p-o 
hydrogen conversion in the region of internal diffusion on a Girdler G-13 catalyst 
(CuO . Cr203)

8'9 at 25°G and hydrogen pressures between 200 and 760 Torr. The 
reaction was studied on five catalyst pellets in the form of an infinite slab with the 
half-width L = 1—4-5 cm and apparent density of 2-26 g/cm3 . Two pellets with 
L = 1-5 cm and apparent densities of 1-95 and 2-0 g/cm3 were also used. The reaction 
kinetics studied in absence of internal diffusion (catalyst size 0-4 mm) confirmed the 
validity of rate equation (42), in which the rate constant k depends on the total pres-
sure of hydrogen. In a manner outlined elsewhere8 '9 , effectiveness factors were 
computed and an optimization technique (grid search method) was used to find 
such optimal values of distributivity Aopi and tortuosity qopt which would satisfy the 
following criterion 

Q(Aopi, qopt) = min Q(A, q) , (45) 

where Q is the sum of squared deviations between experimental values of effectiveness 
factors and those calculated according to Eq. (A-9): 

Q = q) ~ riexp(A, q)Y • (46) 

TABLE I 

Optimum (zfopt, gopt) and Remotest Pairs of q and A Corresponding to the 95% Significance 
Level (A t e m , qiem) 

density, g 
Pellet 

;/cm3 length, cm 
qovi jopt qTem Arem 

2-26 1 -0 -4 -5 1-96 0-0 1-66 0-26 
2-26 1-5 2-02 o-o 1-42 0-50 
2-00 1-5 1-81 0 0 100 0-67 
1-95 1-5 1-38 0-4 1-94—0-99 0-00-0-68 
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The sum in Eq. (46) is to be taken over all experiments on pellets with the same den-
sity. In the optimization, the values of distributivity were confined to the range <0,1) 
and those of tortuosity to q < 0. Final optimum pairs of parameters zlopt and qopt 

are summarized in Table I. Due to an existing correlation between parameters A 
and q, there is a region in the A-q plane where all combinations of A and q lead to 
a value of the objective function Q which, on a 95% probability level, is indistin-
guishable f rom the minimum value (valid for qopt, J o p t ) . These regions are characte-
rized in Table I by remotest pairs ATem, qrem, which lie farthest f rom the optimum 
pairs but still inside the 95% probability region. 

It is obvious f rom this table that the tortuosity is in all cases higher than unity 
including the remotest pairs q and A. The optimum distributivity of more dense 
pellets (2-0, 2-26 g/cm3) equals zero; this corresponds to one of the limits of the semi-
-linked pore model — to a parallel pore model in which all pores ar interlinked so that 
their contents can intermix. Only for the least dense pellet (1-95 g/cm3) it holds 
A = 0-4; this means that a part of the pores (40%) is mutually isolated. A certain 
fraction of isolated pores can of course appear even in more dense pellets; this is 
documented by nonzero values of ATem. If the parameter A possessed only the simple 
physical meaning suggested by the construction of our model (i.e. the fraction of the 
volume of mutually isolated pores) one would rather expect an increase of A with 
increasing pellet density (increase in the pressure of pressing would probably lead 
to blocking of connections among pores). It is therefore obvious that the distributivity 
as well as tortuosity must be regarded as adjustable parameters of a more complex 
and less easily definable physical meaning. 

By using the optimum parameters q and A f rom Table I, effectiveness factors 
rjcalc were calculated for.conditions of all experiments. These values are compared 
with experimental ones, rjexp, on Fig. 5; good agreement between both effectiveness 

FIG. 5 

The Comparison of Experimental and Cal-
culated Effectiveness Factors for the Cata-
lytic /?-0-Hydrogen Conversion 

Pellet: density 2-26 g/cm3 , length o L 1 cm, 
• L 1-5 cm, Q L 2-5 cm, © L 3-5 cm, 3 
L 4-5 cm. Identically marked points cor-
respond to different total pressures of hydro-
gen. 

1 2 3 U 5 6 8 10 
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factors is obvious from this Figure. Simultaneously, the relative deviation \rjcalc — 
— rjexp\jr]exp averaged over all experiments is equal to 6%. 

APPENDIX 

1) Constant Distributivity A 

The effectiveness factor is equal to 

foo 
ri= (1 - J ) i / U n k + A I W ) / ( r ) d r / ( r < l / r » , (,4-1) 

where V i i n k g ' v e n by Eq. (29) and modulus M by relation (24) in which F is simplified to 

F2 = < ^ / . 7 2 > / 2 < l / r > (A-2) 

r/jsol(r) is determined by Eq. (30) and modulus M(r) by Eq. (75). The integral mean value (@/q2y 
is defined by 

£ <^2>= S>(r) f(r) dr/q2(r) . (A-3) 

2) Constant A and q 

The effectiveness factor is given by Eq. (A-l), ^ H n k and J/ isoi(r) by Eqs (29), (30). Moduli M a n d 
M(r) are determined f rom Eqs (24), (15) in which F and F(r) are simplified to 

F2= <®y/2q20/r>, (A-4) 

F2(r)= (\/2q2)r ®(r) . (A-5) 

The integral mean value of the diffusion coefficient is equal to 

00 

= ®(r) f(r) dr . (A-6) 
Jo 

3) Bidisperse Porous Material 

Denoting A(rj) = Aly A(r2) = A2, we obtain 

t] = [1 - A^Jer^l/r}) - (A2e2/e r2(l/r})]riUnk + 

+ '7iso.i(^l/*'"l<l/'» + 1iSol2(A2^/^20/ry) . (A-7) 

' ' l i n k d e t e r m i n e d f rom Eq. (29), J7jSOn 
= Viso l^ l ) . ^ i so l2 = »7isoi(r2) f r o m EcJ- Moduli M, 

M j = Af(r1) and M 2 = M(r2) are given by 

M= &/F, 

My = 0/Fy , (A-8) 

M2 = 4>/F2 , 
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in which F1 = F(rx), F2 = F{r2). A simplified meaning of F, Flt F2 follows f rom 

_2 = [(1 - AQ j ^ a j q l ) + (1 - A2) (®2e2/q2
2)] 

2 [ ( 1 - A,) ( s j r t ) + ( 1 - A2) (e2/r2)] 

F l = ( . r J 2 ) ® J q l , (A-JO) 

F2 = (r2l2) ®2\q2 , (.A-ll) 

where ^ = q ( r q 2 = <?(r2), ^ = ^ ( r j ) , = 3>(r2) and the mean value 0 / r ) m a Y be 
expressed as 

< l / r > = (el/r1e) + (£2/r2£) . C4-/2) 

£j and e2 are porosities of pores with radii r t and r2(e = £x + e2). 

4) Bidisperse Substance with Constant q and A 

n = ( l - A),7link + ^ ^ / ( e r ^ l / r ) ) + / , i s o l 2 e 2 / ( e r 2 < l / r » ] . (A-13) 

T}iink is given by Eq. (29), ?/ i s o l l and 7 i s o i 2 are defined in paragraph 3 of this appendix. Moduli 
M, Mx and M2 are obtained f rom Eq. (A-5) with F, F1 and F2 equal to 

F2 = O V i + @2e2)/{2q2[(e1/rl) + ( e 2 / r 2 ) ] } , {A-14) 

F\ = 9J2q2 , (A-15) 

F2 = r2 &2j1q2 . (A-16) 

The meaning of quantities e t , e2 , is the same as in the preceding paragraph. Because the 
integral mean value <(l fr) is given by Eq. (A-9), the sum of terms el/e r ^ l / r ^ and e 2 /e r2<^l/r)> on 
the R H S of Eq. (A-10) equals unity; these terms represent weights of effectiveness factors 
of isolated pores with radii r j ' a n d r2. 

Relations for effectiveness factors in the region of strong internal diffusion (rj*) are determined 
easily for simplified texture situations 1 — 4 f rom Eqs (37), (38)\ one must only employ corres-
ponding expressions for F, Fy, and F2 (Eqs (A-2), (A-4),(A-5), (A-9)-(A-ll), (A-14)-{A-16)). 

LIST OF SYMBOLS 

flj stoichiometric coefficient 
Ay reaction component 
c dimensionless concentration 
cT total molar concentration 

•®ij> binary diffusion coefficient of pair i—j and Knudsen diffusion coefficient of com-
ponent / in a circular capillary 

$ diffusion coefficient of the key component in the multicomponent reaction mixture 
in the transition diffusion region 

/ frequency function of the pore volume distribution 
F function 
F parameter 
k rate constant 
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L half-width of the infinite catalyst slab 
M, M(r) Thiele moduli 
JK generalized modulus 
m number of components of the reaction mixture 
11 number of pores per unit of the outer surface 
A ' diffusion flux per unit capillary cross-section 
p number of components which take part in reaction (4)\ p sS m 
q tortuosity 
r pore radius 
R reaction rate of the key component 
w weight 
x dimensionless length coordinate in a porous particle 
Wj thermal velocity of molecules 1 
y; mole fraction of component i 
z axial length coordinate in a pore 
A distributivity 
e porosity 
8{ parameter 
0 parameter 
tj, t]* effectiveness factor, effectiveness factor in the region of strong internal diffusion 
(p parameter 

Indices 

s outer surface of a catalyst particle 
eq equilibrium mixture 
isol isolated pores 
link interlinked pores 
opt optimal value 
rem remotest value on the 95% significance level 
<> integral mean value 
/ derivative with respect to jc 
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